《已知四边形ABCD中,AB平行CD,四条边AB,BC,DC,AD(或其延长线分别与平面a相交于EFGH四点,求证,四点共线》 平面延长线相交是平面相交吗

设O是正三棱锥P-ABC底面是三角形ABC的中心,过O的动平面与PC交于S,与PA、PB的延长线分别交于Q、R,则和
D
已知四边形ABCD中,AB平行CD,四条边AB,BC,DC,AD(或其延长线分别与平面a相交于EFGH四点,求证,四点共线
解:
∵AB∥CD,
∴AB,CD确定一个平面β.
又∵AB∩α=E,AB?β,∴E∈α,E∈β,
即E面α与β个公共点.
同理可证F,G,H均为平面α与β的公共点.
∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,
∴E,F,G,H四点必定共线.
在同一平面内两条平行线段延长后可以相交.______.(判断对错
因为在同一平面内,永不相交的两条直线叫做平行线,所以同一平面内的两条平行线,延长之后这两条直线一定不相交.
故答案为:×.