【无穷级数的概念和性质是啥】概念:无穷级数是研究有次序的可数无穷个函数的和的收敛性及其极限值的方法 , 理论以数项级数为基础,数项级数有发散性和收敛性的区别 。无穷级数收敛时有一个唯一的和;发散的无穷级数没有极限值,但有其他的求和方法,如欧拉和、切萨罗和、博雷尔和等等 。可用无穷级数方法求和的包括:数项级数、函数项级数,其中又包括幂级数、傅氏级数;复变函数中的泰勒级数、洛朗级数 。
性质:级数收敛的一个必要条件是它的通项以0为极限 。即收敛级数可以逐项相加或相减 。收敛级数加括号后形成的新级数也收敛 , 并且其和就是原级数的和 。如果任意有限个无穷级数都是收敛的,那么它们任意的线性组合也必定是收敛的 。注意对于都是发散的级数,则不存在类似的结论 。
- 猪的正常体温是多少度
- 为什么有的人小学是学霸的初中就是学渣
- 高尔基的母亲经典语录
- 柳橙菠萝汁是怎么做的
- 买来的熏鸭怎么做好吃
- 狡不及防的狡什么意思
- 太阳上含量最丰富的是那种元素
- 东芝181如何打印自检步骤
- 防雷装置的组成断接卡子的作用
- 厨房台面开裂怎么回事