【Lagrange中值定理】拉格朗日中值定理(Lagrange中值定理)又称拉氏定理,是微分学中的基本定理之一,反映可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系 。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开) 。法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理 。
- 电路中叠加定理怎么用
- 如何区分定理定义公理命题
- 相似三角形定理
- 定理定律的意思
- ft=mv是什么公式
- 垂直平分线的性质定理
- 塞瓦定理和梅涅劳斯定理的区别
- 解析几何公式
- 谁最先发现勾股定理
- 等腰三角形的判定定理是