文章插图
大家好,小跳来为大家解答以上的问题 。平方平均数的几何意义,平方平均数这个很多人还不知道,现在让我们一起来看看吧!
1、调和平均数≤几何平均数≤算术平均数≤平方平均数 。
2、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)几何平均数:Gn=(a1a2...an)^(1/n)算术平均数:An=(a1+a2+...+an)/n平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]这四种平均数满足 Hn ≤ Gn ≤ An ≤ Qn 。
【平方平均数 平方平均数的几何意义】3、扩展资料:区别算术平均数和调和平均数是平均指标的两种表现形式 。
4、算术平均数和调和平均数并非两类独立的平均数;算术平均数和调和平均数的数值之间并无直接关系,也不存在谁大谁小的问题;不能根据同一资料既计算算术平均数 , 又计算调和平均数,否则就是纯数字游戏,而非统计研究 。
5、2、关系:算术平均数、调和平均数、几何平均数是三种不同形式的平均数 , 分别有各自的应用条件 。
6、进行统计研究时 , 适宜采用算术平均数时就不能用调和平均数或几何平均数,适宜用调和平均数时,同样也不能采用其他两种平均数 。
7、但从数量关系来考虑,如果用同一资料(变量各值不相等) 。
8、计算以上三种平均数的结果是:算术平均数大于几何平均数 , 而几何平均数又大于调和平均数 。
9、当所有的变量值都相等时,则这三种平均数就相等 。
10、它们的关系可用不等式表示:H≤G≤X参考资料:百度百科-调和平均数参考资料:百度百科-算术平均数参考资料:百度百科-平方平均数参考资料:百度百科-几何平均数 。
本文到此分享完毕,希望对大家有所帮助 。