文章插图
大家好,小跳来为大家解答以上的问题 。sin(a-b)公式,在平面直角坐标系中 已知点a这个很多人还不知道,现在让我们一起来看看吧!
1、这个题目 , 够长的……如果解决了你的问题记得采纳并评价解决问题,谢谢 。
2、(1)求直线AB解析式; 在Rt△ABO中,AO=4√3,∠ABO=30° 所以,AB=2AO=8√3 故根据勾股定理有,B0=12 所以 , B(12,0) 设AB所在直线的解析式为:y=kx+b 将A(0,4√3)、B(12,0)代入上式,得到: k=-√3/3 b=4√3 所以 , y=(-√3/3)x+4√3 (2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值; 因为△PMN为等边三角形,所以:∠MPN=∠PNM=60° 而,∠PNM=∠NPB+∠B=∠NPB+30° 所以 , ∠NPB=30° 所以,∠MPB=∠MPN+∠NPM=60°+30°=90° 即,MP⊥AB 亦即,△MPB为直角三角形 又,PM=MN=PN=BN 所以 , N为Rt△MPB中点 所以,PM=MN=PN=BM/2 当AP=√3t时,PB=8√3-√3t=√3*(8-t) 那么,在Rt△MPB中,MBP=30° 所以,BM=[√3*(8-t)]/(√3/2)=2*(8-t) 所以,PM=NM=PN=BM/2=(8-t) 当M与O重合时,Rt△PMB即为Rt△PBO 此时,PM=PO=BO/2=6 所以:8-t=6 t=2 (3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE , 点C在线段AB上,设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值 。
3、 如图,设PM交CE于F , 交AO于H;PN交CE于G 由(2)知,当t=2时,M与O重合 而,当t=1时 , PM经过点E 所以,当0≤t≤1时,△OMN与矩形ODCE的重叠部分为直角梯形ONGE 而,当1≤t≤2时,△OMN与矩形ODCE的重叠部分为图中阴影部分 过点P作AO的垂线,垂足为Q;作CE的垂线 , 垂足为S 因为D是BO中点,所以:C、E分别为AB、AO中点 所以,点C(6,2√3) 因为PQ//CE//BO 所以:AP/AC=PQ/CE 即:(√3t)/(4√3)=PQ/6 所以,PQ=3t/2 所以 , 由勾股定理有:AQ=√3t/2 所以,QE=PS=AE-AQ=2√3-(√3t/2) 因为CE//BO , 所以:△PFG∽△PMN 即,△PFG也为等边三角形 而,PS⊥FG 所以,S为FG中点 且∠GPC=∠GCP=30° 所以,PG=GC 那么 , FG=GC=(2/√3)*PS=(2/√3)*[2√3-(√3t/2)]=4-t 而,CE=OD=6 所以,EF+FG+GC=EF+2*FG=EF+(8-2t)=6 所以:EF=2t-2 所以,EG=EF+FG=2t-2+4-t=t+2 而 , 在Rt△EFH中,∠EHF=30° 所以,EH=(√3)EF 所以,Rt△EFH的面积=(1/2)EF*EH=(√3/2)EF^2 =(√3/2)*[2(t-1)]^2 =2√3(t-1)^2 由(1)知,BN=PN=8-t 所以,ON=OB-BN=12-(8-t)=4+t 所以 , 直角梯形ONGE的面积=[(EG+ON)*OE]/2 =[(t+2+4+t)*2√3]/2 =2√3(t+3) 所以,阴影部分的面积S=[2√3(t+3)]-[2√3(t-1)^2] =(2√3)[(t+3)-(t-1)^2] =(2√3)(-t^2+3t+2) 因为1≤t≤2,所以,二次函数-t^2+3t+2有最大值 则,当t=-b/2a=3/2时: Smax=17/4 。
【a-b 在平面直角坐标系中 已知点a sin公式】本文到此分享完毕,希望对大家有所帮助 。
- 百度地图怎么添加店铺地址
- 外派人员在双休日期间是否属加班
- 爱和自由经典句子
- 蟹爪兰在仙人掌上扦插的季节和温度是多少
- 火红的裤衩是什么梗
- 和平精英突变团竞武器怎么解锁
- 电动车行驶证怎么办理
- 驾驶证扣满12分在开车怎么判罚
- 榴莲壳的做法
- 苹果手机怎么在电脑上下载软件 苹果手机怎么设置铃声